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We integrate the Korteweg-de Vries/Burgers equation numerically by using the 
spectral and pseudospectral method, respectively. Comparing the results with analytic 
solutions, we show that the aliasing interactions within the pseudospectral method 
lead to errors increasing in time, while the spectral method gives the correct time evolu- 
tion. It is shown both analytically and by the numerical solutions that three invariants 
of the Korteweg-de Vries equation are conserved by both; therefore the number of 
invariants of any scheme is not decisive for a good approximation of the continuous 
solutions. Finally, we apply the spectral method to calculate the time evolution of 
turbulent sound waves in one and two space dimensions. 

1. INTRODUCTION 

In periodic systems a competitive numerical procedure to finite difference 
methods is the Fourier method. It represents a special case of Galerkin’s method 
with Fourier modes as the appropriate eigenfunctions. The time evolution of a 
given system is followed by integrating the corresponding set of equations in 
Fourier space. Derivatives in real space are well represented, and for a given number 
of degrees of freedom (i.e., number of gridpoints) the Fourier method is more 
accurate than finite difference methods which usually show phase errors [l]. Also 
invariants can be incorporated more easily (see Section 4). The drawback of this 
method, on the other hand, is that nonlinear terms which are local in x space 
are convolution sums in Fourier space, and therfore instead of Nd calculations 
where d is the number of space dimensions, and N is the number of modes in each 
direction, (Nd)2 calculations are involved. One circumvents this ineffective proce- 
dure by transforming back to real space, performs there the local product, and 
returns then to k space. Using time saving fast Fourier transform methods, the 
number of operations is reduced to rNd log, Nd, where r is the number of Fourier 
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transformations involved. In the last step, however, additional terms appear which 
are due to the truncation of Fourier expansion. The question is then whether these 
terms called aliasing or umklapp terms should be removed or not, in order to 
provide an approximation of the continuous problem. The first case will be named 
spectral method (SM), the second case pseudospectral method (PSM). Orszag [l] 
first concluded from studies of the passive scalar convection problem and the 
Taylor-Green vortex-decay problem that alias-free schemes (SM) are the appro- 
priate ones for simulations of rotational incompressible flows. His decision was, 
however, based on a programming error for the PSM [2], and a repetition of the 
calculations gave similar accurate results for both methods; therefore they con- 
cluded that “aliasing error” is a misnomer. For future spectral calculations they 
recommend therfore PSM since it is at least twice as efficient, and is easier to handle. 
SM has been used by Salu and Knorr [3] to simulate two-dimensional guiding 
center plasmas. Kreiss and Oliger [4] and Fornberg [5] used a Fourier represen- 
tation for space derivatives and compared this with finite difference methods. When 
this method of advancing the unknowns in time in x space is translated to k space 
it becomes equivalent to PSM (see Section 2). In this paper we present arguments 
for the use of alias-free schemes. We solved numerically two well-known equations 
for which exact analytic solutions are known and have, therefore, additional 
information to test the importance of aliasing interactions. What we found is that 
the aliasing interactions alter the nonlinear behavior and therefore the time 
evolution of the system. The differences of both methods originate in the small scale 
structurel, i.e., at scales comparable with the grid distance and extend in the course 
of time on the whole spectrum. We therefore propose the use of SM to give the 
best resolution for a given number of gridpoints (modes). We mention that for both 
schemes the invariants computed are well preserved so that on this basis a decision 
in favor of one scheme cannot be made. 

The present paper is organized in the following way. In Section 2 we briefly 
discuss the origin of aliasing interactions and quote a procedure to remove them. 
In Section 3 the first-order KdV-Burgers’ equation and a corresponding second- 
order equation in time are transformed into infinite Fourier space; two solutions, 
the soliton and the smoothed sawtooth, are presented. In Section 4 we discuss the 
truncated system of equations for the KdV equation and show that the first three 
invariants of this equation are conserved. The numerical results are presented in 
Section 5, and the application to random acoustic waves follows in the last 
section. 

1 Similar differences have been reported in the paper of Fox and Orszag [2], but have been 
accounted for by SM. 
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2. THE ALIASING INTERACTIONS 

Given a grid in x (resp. k) space with Nd equally spaced mesh points the trans- 
formation from one space to the other is accomplished by the truncated Fourier 
expansion 

u(x) = c C(k) exp(ik * x), XEBX, 
keBk 

(1) 

G(k) = (l/Nd) C u(x) exp(--ik * x), kE&c, 
XSB, 

where the d-dimensional boxes B, (resp. B,) are given by 

Bx = {x 1 x = (l/N)(n,, n2 ,..., I?,); 0 < ni < N; i = 1, 2, 3 )...) d), 

Bk = {k 1 k = 2n(m,, m2 ,..., md); -K < mi < K; i = 1,2, 3 ,..., d}, 
(2) 

ni and mi being integers and N = 2K (usually a power of 2). Later on we will also 
refer to the box BK which is B, without the factor 27~. An important property of 
this transformation is that 

x; expW * X) = Ndsk,ZneN , 

X 

(3) 

where e = (e, , e, ,..., ed); ei = 0, fl, 1t2, f3 ,...; 
and L, 

ak,,, = &,,qlSk2,92 ..a t&.,,, ; 

is the Kronecker symbol. The corresponding orthogonality condition for 
the infinite Fourier series reads instead 

s 

1 
dx exp(ik * x) = Sk,, . 

0 
(34 

The truncation yields to additional terms on the r.h.s. of Eq. (3), i.e., the compo- 
nents of k are only determined module 277N. The terms with k + 2rNe are aliases 
of k on the discrete grid. Thus if we transform the local product F(x) = U(X) v(x) 
which stands, e.g., for hydrodynamic nonlinearities we get for the Fourier trans- 
forms (denoted by tilde): 

@) = c 2z(P> %) 6,+,-k,O + c @) %d 8P+q-k,2neN > (4) 
P.P Il3cr.e 

p, q, k E Bk ; ed = 0, fl; e # (0, O,...). The second sum represents the aliasing 
interactions. They come into play for large enough arguments. In one dimension, 
e.g., one can see that there are no aliasing contributions if all three arguments 
satisfy 0 < I p 1, I q 1, I k I < (443) K. Although the involved functions will be, 
in general, decreasing functions of the wave vector, this, however, does not imply 
that the aliasing interactions play a negligible role. This will be shown by our 
numerical examples. 



504 SCHAMEL AND ELSkWR 

In the examples, two different schemes are tested. In the first scheme, corre- 
sponding to SM, all aliasing interactions are eliminated by a procedure shown 
below. This alias-free scheme represents a continuous periodic system which is 
transformed to infinite discrete k space and then truncated by introducing a cutoff. 
In second scheme, PSM is obtained first by discretizing the x space and then by 
transforming the equations into k space by means of the truncated Fourier 
expansion (1). 

The dealiasing procedure has been described by Patterson and Orszag [6]. It 
consists of introducing shifted grids in x space and relating the dependent variables 
on it. The aliasing-free P(k) is then obtained by forming the expression 

T (2N)-d xz u(x + &/2N) u(x + 6/2N) exp[--ik * (x + C/2NJ). 
x 

(5) 

The summation over e” where gi = 0, 1; i = 1,2,..., d. Therefore 2d - 1 more 
Fourier transformations are involved in SM than in PSM at every time step. 

Fox and Orszag [2], and also Orszag [7], pointed out that the error made in 
truncating the spectral series is more uniformly distributed in SM than in PSM; 
this is achieved by a nonlocal representation of the nonlinear term (see Eq. (5)), 
a device which has also been successfully used in finite difference methods (see, 
e.g., [S-lo]). 

3. Two NONLINEAR EQUATIONS 

The two equations used to test both schemes are 

(i) the Korteweg-de Vries-Burgers’ equation 

(ii) the second-order model equation 

ytt - v29, - v2qP - vv2q3, - A&-)2 9) = 0. (7) 

Both equations describe the propagation of finite amplitude ion sound waves in 
a lossy plasma (note that the ion sound speed has been chosen as unity). Whereas 
in Eq. (6) only waves propagating in one direction can be followed, Eq. (7) includes 
all directions of propagation. As shown earlier [l l] this second-order scalar 
equation can be derived from the full hydrodynamic set of equations if the resonant 
interactions between three modes are properly taken into account. The modi- 
fications due to the changed nonresonant interactions are expected to be a higher- 
order effect in the small amplitude. 
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Both equations can be represented by an amplitude equation of the type 

@/at> Ck$) = --%, ck,+ 4 c’ u-kl.k2.k8ck~ck8 
( 1 

+ Dkl * (8) 
kd‘, 

The first equation reduces to this form by applying the (infinite) Fourier trans- 
formation 

with 

~(x, t) = F Ck(t) exp(ikx), 
k--m 

% = Ml - hkJ2/2), 

(9) 

Vkl.k,.ks = (kl/akl) 8kl+k2+k,.0 3 

&cl = -b/2) ‘h2ck, 

(10) 

(the reality condition reads c-k = ck*). To transform the multidimensional 
Eq. (7) into Eq. (8) we set 

q(x, t) = c F Ck”(t) exp(ik * x), 
a=*1 k=--m 

@(X, t) = c +cm (-iwk”) ck”(t) exp(ik ’ X). 
a=&1 k=--m 

In writing (11) we used the quantum mechanic gauge condition which becomes 
with CkG(t) = Cka exp(--iwk’t), 

c kk” exp(--iwkat) = 0. (12) 
o=*l 

It can be shown that the amplitude equation satisfies Eq. (12) for all times. For 
a given k the index 01 represents the direction of propagation. The reality condition 
reads 

cz: = c,“* CL; = OI -‘Wk . (13) 

It relates ck- with &+. With this transformation, the complex function &+(t) 
is completely determined by the two real functions ~(x, t) and 9(x, t) through 

Ck+(t) = t [I’ ~{‘?‘(x, t) + @‘(x, t>/l Wk+ ij ev(--ik ’ $3 (14) 
0 
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and vice versa. If we identify C,+ with C, and extend the sum in (8) to include also 
the summation over o/~ , 01~ , (= f 1) indicated by prime, then Eq. (7) reduces to 
Eq. (8) with the expressions 

Zjkpkpkg = &%‘& skl+ke+ks,O 2 (15) 

Dkl = -(v/2) k12(c,, - c:kl). 

Note that the Debye length A, has to be so small that &A# times a typical wave 
amplitude can be neglected as must be assumed in deriving (6) and (7). The initial 
value problems (6) and (7) are therefore transformed to an initial value problem (8) 
in Fourier space. Since only a finite number of modes can be represented in a 
computer we have to introduce a cutoff, i.e., a maximal wavenumber (in our case 
k MAX - - 27X). This leads us to the problem discussed above. 

For the test of both schemes in one dimension we use two known exact solutions 
of Eqs. (6) and (7). 

(a) The solitary wave (v = 0) 

y(x, 2) = u. + Au sechZ[(du/6h,2)1~2(x - ct)], (16) 

c = 1 + 240 + Au/3 for Eq. (6) (164 

= (1 + 2u, + 2 ~h4/3)l/~ for Eq. (7). (1W 

The soliton approximates long wavelength periodic cnoidal waves. The reason 
for introducing u0 instead of zero is that we set C+, = j: dx y(x, t) = 0 for 
all times. This implies 

u,, = -2hn(6 d~)l/~ tanh[(du/24)1/2/X,]. (17) 

(b) the smoothed sawtooth (A, = 0) 

$6 0 = ~~-tanh[du(‘)~Pt)] +2(x-l)/, 

Au(t) = A 40) 
1 + Au(O)t 

(Saffman [12]). The first solution is stationary in time whereas the second solution 
is time-dependent. 

In the case of the KdV-equation (v = 0) there exists an infmite number of 
invariants, the first of which we have already mentioned, 

I1 = j-’ dx q$x, t) = Co . 
0 
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The next two are 

I, = j-’ dx $(x, t) = +cm / C,, 12, 
0 k,=--m 

(194 

I3 = 
s 'dx[dP - h2(d2/4 

0 

In the next section we show that analogous invariants exist for the truncated 
set of equations. 

4. THE TRUNCATED KdV SYSTEM AND ITS INVARIANTS 

The truncation of the system of equations (8) for the first-order KdV equation 
will be accomplished to maintain the symmetry in k space. For this reason we 
define a symmetric box in k space which is defined by 

BK- ={K,I-K+l <K,<K-1}, 

and equals BK , except for the cutoff term (& = --K) which is excluded in BK-. 
The truncated system corresponding to (8) is then given by 

(apt) c, = --iw,, c, + 4 c 
K,, Ke6B, 

(a/at) c, = cK1 = 0, Kl = -K, 

Kl E BK, (20a) 

(2W 

where (k, = 27rK, ; CK1 = C,l) 

vK1,K2.C3 = (‘hbk,) 8KI+K2+Ks,eN , (21) 

% = k,(l - (k,X,)2/2). (22) 

For SM, e is zero, whereas e = 0, fl in the case of PSM, including therefore the 
aliasing interactions. This system has the important property to maintain the 
reality condition C-K, = Ci, , Kl E BK- and C-K = C_*K . With this definition 
we only make use of N - 1 degrees of freedom instead of N. Note that for the 
second-order scalar equation, Kl in (20a) need not be restricted to BK- to maintain 
the reality condition. In the latter case, Kl may belong to the whole box BK , and 
the reality condition is satisfied automatically by relating cK-- to cK+ via (13). 

It is now easily seen from (20) that if cK1=o is zero initially it will remain zero 
so that I1 is conserved. 
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After truncation the second invariant becomes 

We show that the expression 

(2% 

t, = c c&, + C.C. 
KPK 

vanishes. Inserting (20) we get 

Since CZK = 0, we make no error if (20a) is inserted for C-K instead of C-K = 0. 
The first term cancels out the corresponding complex conjugate term; therefore 

I2 = -i7r C KI<~$K,~K, - cK$&c;J ~K2+Ka-K1&J . 
Kl.K2.KEBK 

e3 

The second term equals the first. To see this we introduce the negative of Kl , K, , 
KS, e in the second term and use the reality condition CK1 = CgI to get the first 
term. Replacing Kl by its negative and symmetrizing it, we get 

12 = hi K ,C, EB ((KI + f& + K&/3) CK~CK~CK~~K~+K~+K~.~~ , (25) 
I* 2' s K e 

which is zero, independent of whether the aliasing terms are removed (e = 0; SM) 
or not (e = 0, f 1; PSM). In the latter case, the terms with e = f 1 cancel because 
of periodicity of CK, (=CKI+N). 

The proof of the invariance of & is strongly simplified by the use of the Hamilton 
formalism. The third invariant becomes 

13 = c (b&l) 1 CK, 1' + 8 c CK,CK,CK,sK,+K,+K,,eN (26) 
KI=~K K1*K2kK8'BK 

for the truncated Fourier variables, where &+ = --kI(klA$/2. This expression 
is therefore different for both methods, due to the aliasing interactions in the 
trilinear term. We define a new variable by 

AK, = (~~,lW1'2 CK, , (27) 
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which satisfies 

This expression allows us to find a Hamiltonian 

H = (l/2!) c 1 A, 1’ 
KIP BK- 

+ (l/3!) c (k,k,k,lW,lWk,Oks)l’a A A A 8 K1 K, KS K1+K8+Kab.eN T  (29) 
K1.K2.yB~- 

from which (28) follows by means of the Hamiltonian equation of motion 

A, = -iW,,(8H/8A+) K,EB~. (30) 

Since H does not depend on A-x the equation for the cutoff term A-, = 0 is also 
obtained by (30). His a constant of motion 

h = c A,,(aH/aA,) = c (-iwk,)(aH/aA_K,)(aH/~AK,) = 0. 
K1’BK- KleBK- 

This expression is zero because ok, is antisymmetric with respect to K1 while the 
remainder is symmetric. This is obviously true for both methods. In terms of the 
original variable CK, , the Hamiltonian can be written as 

H = (l/29 c (1 - ~kiM2/2) I CK, I2 

Kl”BK 

+ U/3!) c CCC8 K1 Kz K, Kl+K,+K3.eN P (31) 
K1.Kz.K3EBK 

where we used (22) and added terms which are zero by using BK instead of BK-. 
H is a linear combination of I, , I3 ; H = (I, + Q/2, from which follows that Is 
is invariant. Both methods preserve, therefore, the first three invariants, whereas 
the third invariant is not conserved by the finite difference scheme of Zabusky 
and Kruskal [8]. We note that conservation is meant in the sense of semiconser- 
vation because the error made by time-differencing is disregarded. 

5. NUMERICAL RESULTS 

The system we followed numerically is (20a) with K1 E BK which is appropriate 
for the second-order scalar equation. For the first-order KdV-Burgers’ equation, 
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the reality condition is not conserved if Eq. (20a) instead of Eq. (20b) is used at 
the cutoff K1 = -K, but the numerical solutions showed to be not sensitive to this 
change. 

The main part of our numerical program, the subroutine FALT 2 which com- 
putes the convolution sum, had been tested independently. Given two complex 
(in general, three-dimensional) arrays z2&), B(k,) (k, E B,). FALT 2 computes 

without (LF = 1) and with aliasing terms (LF = 0). For LF = 1 we used the 
dealiasing procedure of Patterson and Orszag [6] mentioned in Section 2. All parts 
of this subroutine had been checked by choosing 

u(k,) = u(k,) = exp[ik,/N], 

for which P(kd is known. 
We followed the truncated system in time starting with C,(O) which is given by 

the inverse Fourier transformation of &z, 0) (and 9(x, 0) in the second-order 
case (see Eq. (14)). The time integration had been carried out by a stable fourth- 
order integration procedure which uses a predictor-corrector method to measure 
the local truncation error (IBM subroutine HPCG). The error weights have been 
chosen to be proportional to the inverse input amplitude ] C,(O)\ so that the relative 
truncation error 6 could be estimated. If 6 exceeded the upper bound 6, = lop5 
the time increment AT = 0.02 had been halved. The computer time T was the 
real time t times N/4 so that T = 1 represents the period of the mean mode 
] k 1 = 2rN/4; we usually chose N = 64. In the case of the soliton solving KdV 
equation we computed the two invariants IZ and 1, given by (23) and (26) to have 
a further control of the accuracy of the schemes. 

In Fig. 1 the soliton with X, = 10-2, du = 0.2 is shown at t = 1.25 corre- 
sponding to 1000 time steps.2 Initially the soliton was centered at x = -0.5 
(which corresponds to x = 0.5 because of periodicity). vnurnl (dotted curve) 
was obtained with the alias-free scheme corresponding to SM; in ynum2 (dashed 
curve) the aliasing interaction was not eliminated (PSM). We see that only the 
alias-free solution agrees with the analytical solution vanalyt (full curve). The 
aliasing interactions weaken the nonlinearity. The soliton decays into a smaller 
one plus a dispersive ion acoustic wave packet which is typical for weaker non- 
linearities. For both runs the invariants are found to be conserved within a relative 
error of 2 x 10-3. Note that the delay of the smaller soliton results from the weaker 
nonlinearity and is not due to linear phase errors which are zero for both methods. 

2 Only one-half of the periodicity interval [0, 1) is plotted. 
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FIG. 1. The KdV soliton at f  = 1.25. vanslyt corresponds to Eq. (16). vnurnI is computed with 
SM (dotted line N = 64, crosses N = 32). q+,‘numz is computed with PSM (dashed line N = 64). 

Figure 2 shows the corresponding spectrum for the alias-free scheme at 10 equi- 
distant time steps (At = 0.125). The spectrum is defined in Eq. (32). Only near the 
cutoff where the spectrum is 10 orders of magnitude smaller are some changes 
seen (blocking error). This is a direct computer output showing again the stationary 
character of the alias-free solution. The corresponding spectrum for PSM is seen 
in Fig. 3. The change of the spectrum sets in at high wavenumbers and propa- 

I -3- 
log,,TIkl . 

-5- 

-7. 

At, -10-z 

N -6L 

Au - 0.2 

At -0.125 

1 5 IO 15 20 k/zn - 25 30 

FIG. 2. The spectrum corresponding to pnurnI (N = 64) at 10 equidistant timesteps. 
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I 
1 5 IO 15 20 k/2x- 25 30 

FIG. 3. The spectrum corresponding to ynurna (N = 64) at 10 equidistant time-steps. 

gates to smaller k. This is not surprising because the aliasing interactions 
c Gi2Gs~K*+K4-x~.eN will affect most strongly amplitudes CKx with K1 near the 
cutoff (I K1 1 N K). In this region the aliasing terms are of the same order as the 
true interaction terms3. The system tries to adjust to an asymptotic state which is 
characterized by a broader soliton whose spectrum decreases faster, superimposed 
by a dispersive wave train, as seen from the jagged part of the spectrum. We 
realize that in spite of an energy range of more than 10 orders of magnitude, the 
aliasing interactions come into play, modifying the whole range of the spectrum. 
The dealizasing procedure therefore, in long time runs, cannot be avoided by 
shifting the cutoff to higher k, i.e., by including more modes. This is supported 
by a run with the alias-free scheme and half the number of modes ($7 = 32). 
The soliton at t = 1.25 (crosses in Fig. 1) coincides with the analytic soliton.4 
The spectrum for this run seen in Fig. 4 confirms the high quality of the spectral 
method. 

Similar results are obtained for the smoothed sawtooth (18). Figure 5 shows 

a An example: KS = -K/2, KS = -K/2, Kl = -K (true nonlinear term), Kz = K/2, Ks = 
K/2, KI = -K (aiiasing term with e = 1). 

4 One might assume that there was a programming error in scheme 2, but we have several 
arguments against this assumption: 

(i) Three invariants are conserved. 
(ii) Scheme 2 (PSM) is simpler than scheme 1 (SM), which obviously works well. 
(iii) A loop in FALT 2 is used only once at each step in scheme 2 but twice for scheme 1. 

Therefore, if scheme 2 is wrong, then it is probable that scheme 1 is wrong also. 
(iv) FALT 2, which could be the only source of error, has been tested independently. 
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AD - IO” 

ilk) N -32 

Au -0.2 

At =0.125 

FIG. 4. The spectrum corresponding to vnnrnl (N = 32) at 10 equidistant time-steps. 

~P(XJl 
N -6L 

Au101 -0.L 

v - 0.6 .lO" 

t -1.25 

FIG. 5. The smoothed sawtooth at t = 1.25; lanalvt corresponds to JQ. (18). ynurnl is computed 
with SM using Burgers’ equation, EQ. (6) (dotted line N = 64). qnUrnl, is computed with SM 
using the second-order equation, Eq. (7) (identical with dotted line). ?nU’numl is computed with 
PSM using Burgers’ equation. 

runs for Au(O) = 0.4, Y = 0.6 x 10e2. Except for v’numl’ , which is calculated 
using the second-order equation, all solutions are obtained by integrating the 
truncated form of Eq. (8) corresponding to Burgers’ equation. Again the alias-free 
scheme 1 (1’) agrees with the analytical result, whereas scheme 2 fails. As in the 
previous case, the aliasing interactions weaken the nonlinearity. The steepening 
process leading to steeper gradients and therefore stronger dissipation is less 
pronounced. These results therefore suggest the use of alias-free schemes in studying 
nonlinear wave phenomena. 

581/22/4-8 
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6. APPLICATION AND SUMMARY 

As an application we followed the evolution of turbulent sound waves (h, ::: 0; 
d = 2 or d = 1) which are governed by the second-order equation, Eq. (7). We 
prescribed initially C(0) by assuming random phases and a power-law spectrum 

1 C, i* a I K I-d, s = 6.5. 

The constant proportionality had been chosen such that 

where the small parameter E was given. 
In Table I we summarize the main parameters for three runs (N = 32). Figure 6 

TABLE I 

Parameters for Three Runs 

Run number 
__.. ~..-. .~ 

Parameter I 2 3 

_- - 

d 2 2 1 

Y 2 x 10-S 2 x IO-2 2 x IO-’ 

6 0.1 0.1 0.1 

,-t = 2.50 
/ 

: ,,.t = 125 
, 

FIG. 6. The spectrum for sound waves of small but finite dissipation (run 1) at seven equi- 
distant time-steps. 
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shows the time evolution of the spectrum for run number 1. The spectrum is 
defined by 

fW = I Ck I2 + I C-k I2 d= 1, 

= ; (I Ck j2/2m), K = (C k2/nj1’: d = 2. (32) 

(In the last expression the sum is taken over all modes lying in an annulus of 
thickness 27~; n is the number of modes in it.) We see a flattening of the spectrum 
indicating the steepening process. The hnite damping v suppresses the accumulation 
of energy at the cutoff as observed in inviscid runs [l 1, 131. At I M 1 a quasi-steady 
state is reached where the steepening process is nearly balanced by dissipation. 
In Fig. 7 the decay of the total wave energy, 

H = c 1 ck I2 + (l/3!) c’ CklCk2CkS8kl+k~+k3.~ > (33) 
k k,,k,.k, 

is shown for different runs with the same initial conditions. The upper curve shows 
the relaxation of run 1 into a state with approximately constant energy dissipation 
rate (constant slope of H(t), while the two other curves (runs 2, 3) show 

1‘ HxlO* 

V 
V 

V 
V 

V 
. 
x V 

V 
x V 
. V 

V 
V 

0.5- * V 
x v  
. V 

f 
x 

x 
F 

0.1 
R 'Y 

!  1 I t 

0 1 2 3 

O’! ; ;y; t> 
FIG. 7. The total wave energy as a function of time (V v V, run 1; a-*, run 2; x x x , run 3 j. 
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the immediate decay of energy. The Reynolds number R, defined for the most 
energetic mode with wavenumber k, by 

R = 1 wk, 1 +~ko2 = +kO , 

is 18 for run 1, but 10 times smaller for runs 2 and 3. Therefore only for high enough 
Reynolds numbers can quasi-equilibrium spectra be obtained. 

Other examples for application of the spectral method are the nonlinear 
Schriidinger equation and mode-coupling equations describing parametric 
processes and involving two different groups ov waves (high-frequency and low- 
frequency). 

In summary, by following two exact solutions of special nonlinear hyperbolic 
equations we could show that aliasing is indeed an error. The error originates in 
the small-scale structure and extends in the course of time to larger scales, thereby 
modifying the whole spectrum. We found that during the evolution the invariants 
are well preserved, which allows therefore no distinction about the quality of 
approximation. In addition to the numerical conservation we also have shown 
analytically that the first three invariants of the KdV equation are conserved by 
the truncated system. For first-order scalar equations (e.g., two-dimensional 
incompressible Navier-Stokes), the simplest way to define a truncated system which 
conserves reality properties and invariants for all time is to set the cutoff term 
identically to zero. For higher-order scalar equations, the same restriction can be 
shown to ensure similar invariance properties. 
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